Complexity Paradigm as a framework for the study of Cooperative Systems

Bernard PAVARD

Cognitive Engineering Research Group
GRIC - IRIT
Paul Sabatier University
France
pavard@cict.fr
Summary

The aim of this paper is to support the idea that the study of complex cooperative systems needs a new conceptual and methodological framework in order to be understood and ultimately reorganised for better efficiency. For this purpose, we will stress the fact that the complexity paradigm is a good framework if combined with a classical analytic (or structural) approach. In the first section, we will trace the historical steps of the theories of complex systems (mainly non linear and distributed system theories). We will show how the non linear approach of complexity was conceptually fundamental to switch from the classical to the actual distributed and multi-agent paradigm. Unfortunately, due to its relatedness to the physical domain, non linear theories have seldom been used to address social science problems. Then, we will see how the theory of distributed agents took the relay of the theory of non linear systems in order to model the dynamics of complex socio-organisational settings. We will then stress the role of this new approach as a deep renewal in the field of social sciences.
Introduction

The objective of this paper 1 is to analyse some of the conceptual and methodological contributions that complexity theory brought to the study of cooperative systems. 

The theories of complex systems have been developed along three complementary, but nevertheless distinct, axes: the theory of non linear systems, the neural network approach and the theory of distributed or self organised systems.

Historically, the notion of complex systems was born at the beginning of the century when H. Poincaré worked on the equations used to predict the trajectory of planets. H. Poincaré showed that it was mathematically impossible to find an exact solution to these equations even for a system as simple as that containing three planets interacting in a non-linear fashion [Poincaré 51].

1 Many thanks to J. Dugdale for her suggestions, discussions and help.

Poincaré revealed to the scientific community a new conceptual difficulty: even a completely causal system (a system where the behavioural rules are perfectly known) could have indeterminate behaviour. Put another way, he showed how a simple system can explode into complex and unpredictable behaviour. 

The research soon faced many obstacles: one of them in the form of cultural difficulties and H. Poincaré himself reassessed the epistemological consequence of his work on non-linear systems 2. Another difficulty came from the lack of computing power which would have been needed to find approximate solutions to problems that do not have exact solutions and thus explore the new field of complex systems.

Nevertheless, the school of non-linear systems brought many new conceptual and methodological insights. These contributions were not directly applicable to the study of socio-technical systems which are the systems of interest to ergonomists, designers and sociologists. 

Non linear systems properties were also investigated through the development of neural networks. Neural networks research emerge during the 50s with the perceptron [Rosenblatt 59]. They were used in order to mimic the behaviour of real neurones and to explore their classification capabilities. Due to their non linear properties, these systems have very interesting properties of classification and extrapolation which has been used as a metaphor for cognitive processes.

Later, the study of distributed and self organised systems overcame this difficulty and provided new perspectives in modelling social and cognitive systems. 

Basically, the theory of distributed and self organised systems is based on the fact that a population of independent and autonomous agents interacting only locally may produce "intelligent" global behaviour. The system is then said to have properties of self organisation. 

This approach has a long lineage beginning with the study of connectionist systems (Rumelhart & McClelland, 1986) to artificial life and agent based societies [Langton 94]. The methodological and philosophical roots of the distributed and self organised systems is drastically different from the classical analytical approaches [Cilliers 99] and mainly due to the fact this paradigm do not use the concepts of representation. 

The distributed and self organised approach found many applications in fields ranging from the study of micro societies (ethology) to the study of human organisations and anthropology [Kholer 99]. Using examples from our analysis of human work activities, we will show how this approach can improve the methods of modelling and the design socio-technical systems. 

In the next section, we will explain what the theory of non linear systems brought to the scientific community and what why it was so difficult to be applied to real socio technical systems.

2 The point that would have intrigued H. Poincaré the most is how a perfectly determinable system, from a functional point of view, could have non-predictable behaviour.

Complexity and theory of non linear systems

The notion of space state 

In order to explain how non linear systems are related to complexity, we will consider a very simple example of a non linear world : two concurrent populations of mice and cats living in a closed environment. Cats eat mice, but if they are not enough mice, cats start to starve and their population decreases allowing the mouse population to increase again. How can we simply model such an equilibrium?

In the early 1970s a mathematician, R. May, studied an equation which could approximately represent such interaction. This well known equation is called logistic equation :

Xn+1 = kXn - kX2n = kXn (1-Xn)
It says that the population of mice at year n+1 (Xn+1) is subject to two opposing trends : a growing factor (k) due to their breeding rate and a decreasing factor (-kX2n) which says that the mice population cannot grow too much because cats eat them. Note that, at this time we are not interested if this equation mimics exactly the interaction but only to its dynamic properties. We could first notice that this equation is non linear due to the corrective factor (-kXn2). Non linear means that if you double the input (Xn), you will not double the output.

Now we have our model, we can see it is perfectly deterministic (that means if we know the initial population and its growing factor k, we can always compute how the population will evolve with time. To do so, we can choose to use a time diagram such as that shown in Fig 1.A. and we will see that the mice and cats population oscillate approximately in synchrony which can easily be understood: when mice are seldom, the number of cats will decrease due to a lack of their preferred food and mice will take this opportunity to breed again, and so on.

Alternatively, we can represent the same phenomena on a phase diagram which is an equivalent type of representation (Fig. 1.B.).


Figure 1 : The variation in the cat and mice populations can be represented either as a time series (A) or as phase diagram (B). The two representations are equivalent.
Now we can analyse what happens when there is a change in the value of the mice breeding factor k. 

If k is small, e.g. k=1.2 (mice do not reproduce very fast), the mice population will stabilise over the following years (Fig 2). If the growing factor increases a little bit, (k=1.5), the system behaves gently: the mice population increases in consequence. However, when k = 2.3 something new happens, Fig 2 shows that the mice population starts to oscillate between two values (oscillation of period 2); for k = 2.5, the oscillation is of period 4 which means that it takes four years for the population to come back to the same value. Finally, at k = 3, the process is no longer periodic. The mice population jumps incessantly among an infinite number of values in a way which is deterministic but cannot be predicted over a long period of time.
[image: image1.png]
Figure 2 Transition from order to chaos for two populations interacting in a non linear way. Here, the mice population has been reported in relationship to its growing factor k. It is possible to see that when k=3, the mice population changes in an erratic (chaotic) way over the years.
From this simple example, we can already see some interesting results:

1. Chaotic behaviour can arise even in a very simple system. In our case, the two populations where related to a simple non linear equation which is fully deterministic. 

2. Complexity can arise only from two facts: iteration (feedback from one year to the other) and non linearity in the feedback mechanism. Then, it is not necessary to have many interacting systems in order to get complexity. 

3. Even a fully deterministic system (the mouse population at year N is fully specified if we know it at year N-1) can show chaotic behaviour which means unpredictability over a certain period of time. 

4. Deterministic behaviour can be seen as a special case of chaotic behaviour. This can be observed in a small window around k=2.85 (Fig. 3). If the mice-cat population has this growing factor value in this window, its behaviour will be perfectly deterministic. It will be possible a find out rules or equations that allow a perfect computation of mice population over the time. This phenomena is called intermittency (a period of order in a universe of randomness). This characteristic behaviour raises interesting questions such as: to what extent are an ordered system and its chaotic version both faces of one indivisible process? Is our familiar rule based world just an island of intermittency in the midst of chaotic universe. 

From order to chaos: how to visualise the transition ?

The objective of this section is to show how it would be possible to represent in more detail the rich behaviour of the interaction between the studied populations and by which mechanism the system's behaviour goes from order to chaos? For this purpose, we will trace the graph representing the mice population times the growth rate (Fig 3). It is possible to see, when the growth rate is below a value of 2, that the mice population always stabilises at certain constant value. However, as soon as the growth rate increases to 2, we can see what is called a bifurcation: a point where the mice population alternates between different values, N2 and N3 (period 2 oscillations), from one year to one another. If the growth rate increases further to 2.3 we can see more and more bifurcations. For k>2.7 it is no longer possible to predict how the mice population will change from one year to one another. We are then in the "chaos" area.
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Figure 3 Bifurcation diagram for the mice population. At around k=2 the population starts to oscillate between two values (first bifurcation point). For k=2.7, the population number is no more predictable, but for k =2 .85 the system returns to a brief period of stability (window of intermittency).
Chaos properties and intermittency

If we look again at Fig 3, it is possible to distinguish different areas. As we have seen, when the growth rate is around 2.5 the mice population fluctuates unpredictably within two broad regions and finally only one which is the chaos area. But at around k = 2.85 in the middle of the chaos area, the population number becomes again predictable (the population number converges again towards a finite value) inside a short window. This is the intermittency area: a period of calm inside a chaotic behaviour.

Thus, is possible to see a deterministic processes as a special case of complex non linear behaviour (in the same way as classic mechanics can be seen as a special case of quantum mechanics). Following this analysis, the theory of complex systems is fully compatible with the analytical approaches because predictive behaviour is a special case of chaotic systems.

Is deterministic chaos really unpredictable? Can we identify some structural properties ?

In order to answer this question we need to go back to the phase space representation and we will consider a simple mechanical device: a non linear pendulum [Baker and Gollub 90].
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Figure 4 Example of stable and strange attractor for a mechanical system such as a pendulum. On the left, the pendulum is free and progressively slows down to equilibrium (shaded circle). In this case, its trajectory can be perfectly computed. On the right, the movement of the pendulum is forced through a mechanical device (an external force). Its trajectory follows an unpredictable path (shown via the dotted pattern) which is called strange attractor because at any time the pendulum position is situated on the attractor (a set of trajectories) but it is impossible to predict exactly on which point in the trajectories the pendulum will be. If we enlarge a small section of the attractor (shown as a inset on the right), it is possible to see its inner structure which is a self similarity pattern (a larger zoom in will reveal the same structure).
This figure shows the complementarily of the linear and non linear approach (the linear being seen as a special case of the non linear). If the system is simplified (linearised) the pendulum behaves in an analytic way: its trajectory can be modelled as an analytic solution. In case of a strong interaction with its environment, the same pendulum starts to show chaotic behaviour and its trajectory can no longer be computed in as a simple mathematical formula. Nevertheless, it is possible to see some structural properties of the trajectory (strange attractor). In such conditions, the exact position of the pendulum can no longer be anticipated spatially. It is only possible to specify a domain of possibilities.

Conceptual consequences

The studies of non linear complex systems brought new insights to our vision of the world. The first conceptual breakthrough was related to the notion of causality in deterministic systems: even a perfectly causal system (a system where we know all of the functional rules) may show unpredictable behaviour. This is due to the non linear characteristics of the interactions between the components of the system, not because of our lack of knowledge about the state of the system.

This also means that such systems cannot behave in the same way on two consecutive occasions, even if they start from the same initial condition. This property undermines the traditional analytical experimental paradigm (which is based on the notion or reproducibility and linear relationship between all its parts).

Strengths and weaknesses of the theory of non linear systems

Non linear theories have rarely been used in social or cognitive sciences (occasionally they have been used in some applications where dimensions of complexity was of interest). This difficulty is partly related to the fact that non linear systems are manly concerned with the physical world where it is meaningful to use analytical equations to model behaviour. Unfortunately, this paradigm has some difficulties in managing symbolic expressions3 be used strictly because of its lack of symbolic power.

Nevertheless, this work has been sometimes assessed as a major breakthrough for the XXth century science because it opened new windows in our understanding of the physical world allowing us to better formalise interactions between macroscopic and microscopic behaviours, to better understand how small events can have drastic consequences and ultimately better understand the limitations of the classical analytical paradigm.

The theory of non linear systems has also important extensions in other approaches of complex modelling such as neural networks. Neural networks are basically made of a set of components (neurones) in interconnections. Due to the non linear properties of the connections between neurones, neural networks share very interesting properties with cognitive systems such as learning, anticipation as we will see in the following section.

3 Nevertheless, some research have been undertaken in the domain of symbolic modelling [Destexhe, Nicolis & Nicolis 89].

Complexity and neural networks

Whereas the non linear system theory focuses on physical systems, the connectionism approach was developed in the early 40s in order to model brain behaviour [Rosenblatt, 62]. A qualitative step in the understanding of how neural networks encode information allowed a renewal of this approach from 1980 [Rumelhart & McClelland 86].

From this time, neural network research not only brought new empirical results concerning how a neural system may encode and learn information but it also started to undermine the traditional representational paradigm [Cilliers, 1998].

In the following section we will analyse the basic mechanisms related to neural networks and we will see how this approach is suitable for modelling complex systems in the social sciences.

Basically, a neural network (NN) is composed of a set of nodes. Each node is connected to the others via a set of links. Information is transmitted from the input to the output cells depending of the strength of the links (Fig. 5). 

Usually, neural networks operate in two phases. The first phase is a learning phase where each of the nodes and links adjust their strength in order to match with the desired output. A learning algorithm is in charge of this process. When the learning phase is complete, the NN is ready to recognise the incoming information and to work as a pattern recognition system. For example, it is possible to train a neural network in order to recognise phonemes. In this case, the input pattern could be a short sequence of sound (with each node encoding the sound intensity during a subpart of the sound sequence). The output layer will be a set of nodes, where each node represents a specific phoneme.

[image: image4.png]
Figure 5 An example of a connectionist network. In this type of system, the information arriving in the system is distributed between a set of nodes (or neurones) as a function of the strength of each link. The strengths of the links are gradually adjusted using a training (or learning) mechanism which compares the actual behaviour of the network with the desired behaviour. In this type of system, it is impossible to speak about representation, context, or temporality, since all of these factors are incorporated into one factor: the strength of the connections.?
Such a network has been used to study cognitive processes because they share very interesting properties with natural cognition.

Neural networks are robust: if we remove some nodes or links, the performance of the system degrades smoothly (not abruptly as with a traditional rule based system), they are also capable of "content addressable memory" : the ability to recover all of a data set if only a portion of it is evoked. Neural networks are excellent for discrimination, pattern recognition, classification and storing complex data sets.

Finally, neural networks can be trained by unsupervised learning which is a property we would require in any natural system.

Multilayered architectures have been extensively used to study language in the last decades starting from the work of Rumelhart and McClelland. In an early research, they modelled the acquisition of past tense forms. The network was made of a single processing layer which receives typed English present tense verbs and produces typed past tense forms. Even if this simple experiment was limited in terms of explanatory power, it starts a new alternative to language models where it was not necessary to explicit formal rules in order to model systems that behave like it was rule based.

Following this idea research in linguistic and neural networks gave deep insight in our understanding of language properties like its stability over time (evolution of language over time) and between communities (jargons, child language vs adults, etc.). The notion of attractor and interaction between attractors has been extensively used to explain the emergence of the meaning of words and the sociodynamics of language [Cooper 99].

From a more theoretical point of view, neural networks raise the problem of the role of representation in cognitive science because they must emulate rule based systems without explicitly formulate these rules. Furthermore, the same neural network, due to its unsupervised learning capabilities can built up its own architecture in order to solve a problem. Last but not least, neural network because of its capability of "content addressable memory" can works in degraded situations where information is missing which is a real weakness with the traditional rule based systems [Cilliers 98].

Complexity and the theory of distributed systems

Distributed systems are systems made of a collection of entities (humans, technical systems, insects, etc.) and where decision (control) is totally or partially taken by these entities. Often we refer to agents instead of entities when we simulate the behaviour of real distributed systems by software. Agents are artificial constructs (software based) characterised by internal states and behavioural rules. The stereotypical example of a distributed and complex system would be a colony of ants. Without any central co-ordination (if we suppose that nobody in a social insect colony have such organisational power), the colony will behave in a very coherent way over centuries. Such colonies can also show complex social reorganisation in periods of difficulties [Bonabeau and Theraulaz 94]. Structural flexibility, fast reaction to external environment changes, robustness looks to be the positive consequences of distributed systems.

Like neural networks, distributed system are in many ways conceptually different from the traditional structural approach which suppose the pre existence of a general structure. Distributed system theory starts from the analysis of local interactions, formalise the relationship between individual agents and their environment or other agents in its vicinity. Then, through the simulation of this interaction, the model can computationally generate global behaviour. It is a pure bottom up process by opposition to the classical analytic approach which make hypothesis about the global structure (or invariant) of the system and then try to validate with a top down4 procedure.

Thus, distributed agents encode and react to the outside world without any global view of the system and without any central co-ordination. The global behaviour and functionality's of the system emerge from the local interactions. Local learning rules allow individual adaptation to the environment resulting in better global behaviour.

The paradigm of distributed agents has been extensively used recently in many domains such as ethology, economics, population behaviour, politics, emotions, disease transmission, etc. [Epstein and Axtell 96] in order to better understand the dynamic of these systems but surprisingly has seldom been applied to cognitive science [Mitchell 98].

For example, recently, a pluridisciplinary team (archaeology, anthropology, geology, computer science, economy, physiology), build up a project in to explore the formation and dissolution of prehistoric villages in the south-western Colorado, USA between AD 900 and 1300. This project extensively used the SWARM agent based platform developed by the Santa Fe Institute. In the model, agents are households (family nuclei) and rules are coding interaction between agents and their environment : how rainfall impact harvest production, how topography and land productivity limit migration, etc. All these rules are local, restricted to individual. There is no structural description of the process in order to describe global behaviour [Kohler & Carr 96].

4 Here we do not refer to the classical opposition between top down (data driven) and bottom up (concept driven) processes in cognitive science which keep the idea that all the conceptual power is "in the head of the subject". Here, the opposition refers to the fact that cognitive or social functions emerge from interaction (bottom up process) an is not pre supposed (top down). The emphasis is made on agents rather on system.

Emergence and self organisation

Emergence is one of the most important properties of distributed systems. Intuitively, a property is emergent when it can not be anticipated from knowing how the components of the system work. For example, the global properties of world-wide stock-market (the exchange rate, for example) cannot be modelled from knowledge about each country's economy. This is not due so much to the incompleteness of the information that we have about each country's economy, but rather to the non-linear and distributed character of the interactions.

If a system is capable of self organisation, its functions evolve over time so that they can respond better to the requests of its environment. In this sense, a complex self-organised system cannot be described as structurally stable.
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Figure 6: A diagram showing the process of emergent behaviours, based on local interactions (on the left) and more structured processes (on the right), based on the implementation of rules regarding work organisation or more structured cognitive processes [from Lewin 93].
Figure 6 illustrates the duality of cognitive and representational processes in any socio-technical system. On one side, the local interaction between agents and their environment can generate dynamic and complex emergent behaviour. This emergent behaviour does not need a representational theory in order to be explained since it is explained by self-organisation. On another side, emergent behaviour can be analysed as a structured phenomena by the actors themselves and, by a feedback mechanism, generate more or less conscious reactions.

An intuitive definition of a complex socio technical systems

Whilst it is possible to give a precise definition of a complex system5 , we will provide a description in relation to our experience with the study of socio-technical systems.

A complex system is a system for which it is difficult, if not impossible to restrict its description to a limited number of parameters or characterising variables without losing its essential global functional properties.
A truly complex system would be completely irreducible. This means that it would be impossible to derive a model from this system (i.e. a representation simpler than reality) without losing all its relevant properties. However, in reality different levels of complexity obviously exist. If we are interested in situations which are highly structured and governed by stable laws, then it is possible, without loosing too many of the system's properties, to represent and model the system by simplification. Thus, the essential question is to know to what extent the properties of the socio-technical systems that we analyse and design fall into one or the other of these situations. In other words, to what extent can we make an abstraction of microscopic interactions in order to understand macroscopic behaviours? In what measure are microscopic interactions linked in a non-reducible way with the laws that govern more structured behaviours? Finally, is it possible to explain the most structured behaviour using rules which control the microscopic behaviour (the principle of emergence)? This last question is important from an epistemological and methodological point of view: if we consider theoretical economy, it can be preferable to generate the structural property of a system using knowledge of its microscopic properties (emergence), rather than suggest its macroscopic properties and only validate them with an analytical process.

The reduction of complexity is an essential stage in the traditional scientific and experimental methodology (also known as analytic). After reducing the number of variables (deemed most relevant), this approach allows systems to be studied in a controlled way, i.e. with the necessary replication of results. This approach in itself need not be questioned. However, when considering complex socio-technical systems it is appropriate to analyse precisely the limits of the approach. The questions addressed in this article are: what are the theoretical and methodological limits of this traditional approach, and, what is the contribution of the distributed and complexity approaches? To illustrate our discussion we will use examples taken from an on-going study concerned with the redesign of a French emergency call centre6 [Dugdale et al. 2000].

5 Formally, a system starts to have complex behaviours (non-predictability and emergence etc.) the moment it consists of parts interacting in a non-linear fashion. It is thus appropriate to differentiate between a complicated system (such as a plane or computer) and a complex system (such as ecological or economic systems). The former are composed of many functionally distinct parts but are in fact predictable, whereas the latter interact non-linearly with their environment and their components have properties of self-organisation which make them non-predictable beyond a certain temporal window.

6 From a methodological point of view, the examples cited in this article cannot be taken as complete evidence of the advanced properties of complex systems. In order to prove the necessary and sufficient character of the complexity approach (which, as mentioned previously, is focused on local and microscopic interactions, rather than on a conceptualisation of pre-existing structures), it is necessary to demonstrate in a constructive way that the model under consideration does indeed generate the macroscopic behaviour postulated within the framework of an analytical approach. This last step of the methodology is not treated in this article, but is currently under development in several projects which use a platform of simulation of social interactions [Dugdale et al. 2000].

Complexity in socio technical and cooperative systems

Cooperation in socio technical systems is now a field of research by itself. Many aspects of agent interaction, cooperation, negotiation has been reported, analysed and modelled. Methodologies as well as theories have been developed in order to assess different aspects of it7 .

Nevertheless, cooperative systems still show some reluctance to be modelled in the traditional analytical way. Many reasons can be advanced to explain this fact. We would like to stress the fact that beyond traditional explanations such as "we have not enough knowledge on the collective state of affairs", unpredictable inferences, etc.., complex cooperative systems get there efficiency because of their complexity dimensions. 

In a first step we will give few examples of this complexity (non deterministic, ...)

Four specific properties of complex systems will be discussed in relationship to their usefulness to socio-cognitive modelling:

· Property 1: non-determinism. A complex system is fundamentally non-deterministic. It is impossible to anticipate precisely the behaviour of such systems even if we completely know the function of its constituents. 

· Property 2: limited functional decomposability. A complex system has a dynamic structure. It is therefore difficult, if not impossible, to study its properties by decomposing it into functionally stable parts. Its permanent interaction with its environment and its properties of self-organisation allow it to functionally restructure itself. 

· Property 3: distributed nature of information and representation. A complex system possesses properties comparable to distributed systems (in the connectionist sense), i.e. some of its functions cannot be precisely localised. 

· Property 4: emergence and self-organisation. A complex system comprises emergent properties which are not directly accessible (identifiable or anticipatory) from an understanding of its components. 

Property 1: Non-determinism

Non-determinism of socio-cognitive processes is often considered as being due, either to a lack of knowledge of the observer about the analysed system, or to a disturbance of the system as a result of unforeseen causes (e.g. exterior events or noise etc.).

An analysis of the properties of complex socio-technical systems suggests that non-determinism can have an important functional role. We will consider one of the most usual mechanisms concerning cooperative systems: broadcasting. We will show that this mechanism is non-traceable (i.e. that it is difficult, if not impossible, to describe explicitly the information flows that are relevant in understanding how a collective functions) and that it provides a structure for the management of the memory of the collective. Fig. 7 briefly explains how the broadcasting mechanism operates.

7see COTCOS web site (http://www-sv.cict.fr/cotcos/) where more than 60 papers exemplify this domain of research.
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Figure 7 An example of the broadcasting mechanism. A caller, C, telephones a medic (Med) at the emergency centre to request an ambulance. This communication can be overheard by several people depending on their geographical position and the volume of the communication. These people can be either authorized, unauthorized, interested or disinterested interlocutors. The fluctuating status of the interlocutors, as well as their geographical positioning or their level of involvement with a task, will significantly influence the development of the common knowledge of the collective. In this example, we can see (in 3) that agent O overheard the conversation between the caller and the medic (1 and 2) because of his spatial proximity to the doctor and the volume of the communication. As a result, agent O dispatched an ambulance without the medic making an explicit request.
Broadcasting is probably one of the most important mechanisms for understanding the efficiency of a collective in situations of co-presence [Rognin and Pavard 96]. Indeed, it is the only mechanism which allows information sharing at a low cognitive cost. The classical theories of communication (mainly dyadic) have seldom analysed its functional role [Decortis and Pavard 94], although its cognitive components are described with precision [Goffman 87].

The cognitive dimensions of broadcasting are varied (audio, visual, gestural, etc.) and each one contributes to making the process non-deterministic. Some of the main factors contributing to this mechanism are: the number of people present at the time of the communication act, their status (authorized or unauthorized interested, etc.), their availability and the context etc.

As previously mentioned, it is extremely difficult to trace the flow of associated with this type of communication. Neither the actors involved, nor the observer have the means or the cognitive resources to know who heard the message and even less to know how it was interpreted. In addition, it is often very difficult to separate the environmental factors from the internal factors.

Property 2: Limited functional decomposibility

This property of complex systems is difficult to understand intuitively since it goes against the principles of the dominant functionalist culture. According to the traditional analytical approach, a system that is functionally decomposable is a system whose global functioning can be completely deduced from knowledge of the function of its sub-components. To take a trivial example, if we know the function of each element of a car (brakes, distributor, engine etc.) it is possible to calculate the global function of the vehicle by combining the functions of each element. Systems theory (cybernetic, automatic) is one of the disciplines essentially dedicated to formalising this approach.

A truly complex system cannot be represented by combining together a collection of well defined functional components. A principal obstacle to the functional decomposability of complex systems is the dynamic and fluctuating character of its constituent functions. The interaction with the environment, as well as the learning and self organisation mechanisms makes it unrealistic to regard such systems as structurally stable.

One of the most interesting properties of socio-technical systems is their capacity to reorganise rapidly their functional structure. Depending on the context, agents can significantly modify the "rules of the game" and, for example, change their cooperative mechanisms. This change can occur without having been programmed at a central level. The example shown below illustrates this type of mechanism. It describes a cooperative episode between several agents working in the same room. The cooperative scenario is based on the broadcasting mechanism: a loudspeaker (held by a medic dressed in white in the photograph of Fig. 8) passes on the radio communications, transmitted by ambulances at the scene of accidents, to the rest of the collective (the personnel of the emergency centre).
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Figure 8 An example showing the flexibility of structural properties of a communication system. The mode of transmission of information between the agents depends on environmental factors (here, the ambient noise) and informal control exercised by individual agents (here, the estimated interest of the message to the collective). The medic (shown in white) changes the volume of the loudspeaker, depending on the semantic content of each message and the level of noise in the room. This allows him to adjust the scope of broadcasted message.
We can see from this example that the structural properties of a communication system (here, the mode of information distribution) depend on environmental factors (the operator regulates the loudspeaker volume according to the ambient noise) and a semantic analysis of the content of the message. According to the context, i.e. the estimated relevance of the message for the collective, the operator will increase or reduce the volume of the loudspeaker in order to optimise the way information is distributed to the collective.

This mode of communication control is neither centralised, nor formalised (there is no official or semi-official rule specifying the mode). The operator applies his mode of control probably without having specifically thought about its utility (the operators are not generally aware of the importance of broadcasting mechanisms to the collective and often think of it as a source of noise). 

The example shows that the structure of the communication system, on which the efficiency of the collective depends, is subject to real time informal adjustment mechanisms. The communication function of the collective depends here on environmental constraints (ambient noise level) and contextual factors (the interest of the message to the collective) which are controlled by individual agents.

If this type of situation had been analysed according to the functionalist paradigm, the emphasis would have been on dyadic communications, such as the direct communication between agents and the telephone communications, etc. Peripheral mechanisms (such as broadcasting and the ambient noise) would have been treated as more or less disturbing secondary events. However, these mechanisms are essential in order to understand the efficiency of the collective. In this type of complex situation, the functionalist approach, would underestimate the environmental factors and the non-deterministic interactions between the agents. The model would have been of little ecological relevance since it would not have allowed us to understand the processes of common knowledge elaboration which are related to broadcasting.

The functional importance of the broadcasting mechanism using the tuning of the loudspeaker volume has been simulated by computer in order to show the importance of regulating communications at the level of the collective [Dugdale and Pavard 2000]. A similar study in the field of air traffic control showed that it would be difficult to understand the reliability of this type of system without taking into account the numerous control loops which are due to informal sharing of information via radio messages and the concept of the 'floating ear' [Bressolle et al. 96].

Property 3 The distributed character of information and representations

The notion of distributed information is largely polysemic, conveying widely different concepts. In its most commonly accepted meaning, a system is said to be distributed when its resources are physically or virtually distributed on various sites. Thus, a machine (a computer for example) can distribute its calculations amongst several remote sites and assemble the results according to a pre-defined algorithm. Equally, an operator can distribute his work tasks and tools according to a particular strategy. The concept of distribution supports the concept of redundancy, when some distributed resources are redundant.

The notion of distributed representation also exists in the field of cognitive psychology [Zhang and Norman 94, Hutchins 90, Hutchins 95]. It covers the fact that, in the interaction between an actor and his environment, artefacts (tools) play an important functional role in the organisation of the reasoning and the transmission of knowledge. To illustrate this principle, we will take the frequently used example of paper strips in the domain of air traffic control. Paper strips are small pieces of paper on which aircraft characteristics, such as its call sign, its destination and its route, are written. It has been shown that these strips help the controllers to represent information to themselves (for example by having the strips organised on the strip board according to the dynamic properties of the planes) and also to cooperate between themselves [Bressolle et al. 95]. Thus, we can speak about distributed representation, since some cognitive properties (such as memorizing and structuring of the problem etc.) are partially supported by artefacts in the environment. In one way, this notion is close to the concept of physically distributed systems. 

Finally, we could introduce a third meaning to the notion of distributed systems which stems from connectionist models and conveys essential concepts for understanding the robustness of the collective in processing data. In the connectionist meaning, a distributed system is one where it is not possible to localise physically the information since it is more or less uniformly distributed between all of the objects (or actors) in the system.

We can see that the term "distributed representation" is inappropriate here since it is impossible to identify any form of representation in such a network. The representation is "dissolved" either in the nodes of the system or in the links. Thus, a distributed system, in the connectionist sense, does distinguish between concept, representation, and context, since these three entities are "encoded" simultaneously on the same support (nodes and links).

Our argument is to show that a truly cooperative system works on both representational and connectionist modes. This is why the system is particularly robust in complex environments, which are unpredictable and non-deterministic.

The following example shows another real situation encountered in the framework of our study on the reorganisation of the emergency centre. Recall that the aim of the collective is to maximise cooperative behaviour between the actors, in order to respond in the best possible way to events in the environment (such as unexpected calls, work peaks, changes in the physical position of the agents, etc.).

We have shown that the efficiency of this type of collective is based on a situation of co-presence which allows information to be distributed by broadcasting and "floating ear". In the case of a normal workload, it is the proximity between the agents which allows them to keep informed of what is said in the collective (floating ear) and to regulate locally the efficiency of information distribution (by talking more or less loudly, by adjusting the volume of the loud speaker and by adopting adaptive ostensive behaviours).

Fig. 9 represents this type of information distribution between agents whilst at the same time showing the importance of the interaction between the environmental factors (e.g. noise level and space constraints) and more central processes (such as the control of the modes of communication).

From this figure, we can see that a collective in a situation of co-presence, possesses structural.

When a call, which relates to a previous call, is taken by another agent (i.e. one that did not take the initial call), the system is robust enough overall to be able to redirect the call to the correct agent.

[image: image8.png]
Figure 9 An example showing the distributed nature (in the connectionist sense) of cooperative systems. This diagram represents a collective composed of several agents. The agents are represented by circles (Agent i, j, k etc.). At time T0, an incoming call is dealt with by agent e. This agent adopts a communication strategy which aims to control the distributed character of the message. Verbal information (shown by thick black arrows) is distributed in a non-deterministic way (by broadcasting) to the other agents (Agents i, j, k) according to the characteristics of the environment: the noise level, the spatial constraints (the distance between the agents), the cognitive resources (workload) and other factors such as postural or gestural ostensive behaviour (shown by dashed arrows) which allows agents to control their listening behaviour [Benchekroun 94]. If at time T1, a call arrives which is related to a previous call, but is taken by an agent other than agent e, the collective (i.e. one of the other agents in the room) will be able to handle this new call correctly because of the common memory (shown as Mki, MKj and MKk) established by the broadcasting mechanism.
Such a system can be regarded as complex because part of its functions (here the functions of information sharing and information distribution) cannot be reduced to a representation where it is possible to locate precisely a relevant piece of information. Neither the actors nor the observer can, at a given moment, give a deterministic plan of this process. Moreover, as we saw previously, the structural properties of the communication system are under local control: each agent can control the way in which he locally distributes the information.

Understanding how such a system works requires having a model of this type of dynamics, including mechanisms of training, of self regulation and control of the interaction with the environment.

Property 4: Emergence and self organisation

Certain cognitive and communication processes in a collective correspond to this definition. We will give an example taken again from our study of emergency control centres. The emergent process described is not beneficial since it does not produce a better functional structure but instead produces a degraded behaviour, whose explanation escaped the analysis of participating actors [Benchekroun 94]. Benchekroun's ergonomic study aimed at providing a basis for a new communication system between doctors and telephone operators (trained nurses). The difficulty encountered by these agents was during periods of intense telephone activity: a critical time where it is necessary to manage calls effectively. Paradoxically, it was also the time where the collective seemed to become dysfunctional, i.e. incapable of responding to an exterior request. An ergonomic analysis highlighted the importance of the interlocution and broadcasting mechanisms in the regulation of emergency calls: the agents were taking into account the ostensive behaviour of their colleagues in order to determine whether or not they could interrupt a busy colleague to obtain some necessary information. Furthermore, the collective memory was affected since, as we described previously, broadcasting is the basis for the construction of the collective memory. The sudden dysfunction of the collective was due to the fact that as the workload rose, agents became increasingly unable to acquire information produced by their colleagues through 'floating ear'. This, together with the unavailability of agents, was producing a dysfunction in the system.

It is thus a purely local interaction between agents (based on simple rules of communication) linked with the distribution of information mechanisms that produced a global (emergent) behaviour resulting in a dysfunctional system. Formally modelling this process allowed us to confirm the relevance of this interaction between local behaviour and environmental factors [Pavard et al. 90].

Conclusion : Which paradigm to study complex systems?

The aim of this paper was to explore the usefulness of the complexity paradigm in analysing socio-technical cooperative systems. A complex system is intuitively described as a system where it is difficult, if not impossible, to reduce the number of descriptive parameters or variables without losing its essential functional global properties. We defined and analysed four characteristics of complex systems: non-determinism, limited functional decomposability, the distributed nature of information and representation, and emergence and self-organisation. These characteristics were illustrated using examples taken from our work in designing cooperative systems in the domains of air traffic control and emergency control centres. We demonstrated that these four characteristics, which are not treated within the framework of classical analytical approaches, are essential to understand certain functional aspects of cooperative work. For example, from our field analysis of cooperative work situations we have identified the functional role of the broadcasting mechanism. This mechanism is at the heart of the distribution of information between agents in a socio-technical system. By utilising complexity theory we can identify that the mechanism is both non-tracable and non-deterministic. Furthermore, by identifying the distributed nature (in a connectionist sense) of this mechanism we can hypothesise that the robustness of the overall system, i.e. the capacity of the system to handle unforeseen data, is functionally related to the concept of a locally distributed control of information. These mechanisms are principally concerned with local interactions (between the social actors) and are not represented at a central organisational level where certain functional properties (e.g. reliability, robustness of decision making and the occasional abnormal operation of the collective) emerge.

As previously stated, this approach and the results would be incomplete if we could not prove them in a productive way, i.e. by simulating the effect of local interactions on the global collective decision during a cooperative scenario. This stage must permit the emergence of global properties of system robustness. Several simulations are currently being analysed (for example see [Dugdale et al. 2000]), to demonstrate the power of this approach.

From a general standpoint, we defend the idea of a complementary structural and distributed (also termed 'dynamic') approach both in cognitive science and more generally in social science. These two approaches cover two important dimensions in our understanding of the collective. When used alone the two approaches are necessary, but not sufficient to explain the robustness and dynamic nature of socio-technical systems [Mitchell 99]. The classical analytical reductionist approach is particularly weak in explaining the emergence of functional properties, despite the fact that in socio-technical complex systems, the strength of the collective lies in such properties.
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